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Abstract

This article presents a framework for robust inference that accounts for the many
methodological choices involved in testing asset pricing anomalies. We demonstrate
that running multiple paths on the same original dataset inherently results in high
correlation across outcomes, which significantly alters inference. In contrast, path-
specific resampling greatly reduces outcome correlations and tightens the confidence
interval of the estimated average effect. Jointly accounting for across-path and within-
path variability allows the variance of the average effect to be decomposed into a stan-
dard error, a nonstandard error, and a correlation term. In our empirical analysis, we
find that 29 anomalies can be classified as persistent, as their 95% confidence intervals
for average returns exclude zero. Our results also indicate that for most anomalies,
nonstandard errors dwarf standard errors and are the primary determinants of the
width of confidence intervals for multi-path average effects.
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1 Introduction

The finance literature has recently shown increasing interest in multi-design studies (see
Table 1 below), building on emerging practices in other scientific disciplines.1 Such em-
pirical studies consider numerous variations of the baseline methodology, often referred
to as forking paths. They can be either conducted by multiple independent research teams
(multi-analyst studies, e.g., Menkveld et al. (2024)) or by a single research team consider-
ing various potential modeling decisions (multi-path studies, e.g., Soebhag et al. (2024)).

Multi-design studies provide two distinct advantages. First, by estimating a distribu-
tion of effects rather than a single point estimate, it provides a more comprehensive char-
acterization of the analyzed phenomenon and serves as a potential remedy for p-hacking
in empirical research (Chen, 2021).2 Second, it quantifies the uncertainty arising from ad
hoc methodological choices made by researchers, which Menkveld et al. (2024) coined as
nonstandard errors (NSE).

Multi-design studies offer valuable opportunities for advancing asset pricing. Indeed,
the debate surrounding the robustness of empirical findings and the uncertainty stem-
ming from methodological decisions is particularly intense regarding the so-called anoma-
lies (Fama and French, 1996; Hou et al., 2015; McLean and Pontiff, 2016). Given the pro-
liferation of these return regularities—statistically significant, persistent, and unexplained
by standard risk-based models—and their practical importance in the asset management
industry, there is a pressing need for robust approaches to navigate the “factor zoo” (Har-
vey et al., 2016; Feng et al., 2020; Bryzgalova et al., 2023; Zhang et al., 2025).

Despite growing interest in multi-design studies, rigorous approaches for handling
the multitude of resulting estimates remain underdeveloped. In this paper, we propose a
framework that enables both methodological and practical contributions to the literature.
Methodologically, our main contribution is to demonstrate how to formally test whether
the average effect differs from zero. To do so, we decompose of the variance of the mean
effect into the correlation terms among the various generated estimates, the standard error
(SE) and the NSE of the effect. In contrast with the existing literature, (the square of) our es-
timates for the SE and NSE of the effect sums exactly to the total variance of the effect. On
the practical side, we apply these results to the context of asset pricing anomalies. In par-
ticular, we derive and implement statistical tests for identifying persistent anomalies—those
that are robust to methodological variations.

The various steps of our analysis are the following. We start by showing that overlap-
ping research paths applied to the same dataset inherently produce highly correlated esti-
mates, with correlation coefficients exhibiting a skewed distribution. We then show how
this strong correlation structure across outcomes distorts inference, resulting in wide in-
tervals that hinder our ability to draw definitive conclusions. To address this, we demon-
strate that path-specific resampling significantly reduces outcome correlations and sym-
metrizes their distribution around zero, leading to tighter confidence intervals.

1Key references include Gelman and Loken (2014) in statistics, Silberzahn et al. (2018) in psychology,
Botvinik-Nezer et al. (2020) in machine learning, Huntington-Klein et al. (2021) and Breznau et al. (2022,
2024) in economics, Gould et al. (2023) in biology, and Huber et al. (2023) in behavioral sciences.

2P-hacking corresponds to relentless analysis of data with an intent to obtain a statistically significant
result, usually to support the researcher’s hypothesis (Elliott et al., 2022; Brodeur et al., 2016).
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To see why this happens, we recall that the width of the confidence intervals around
the mean increases with the variance of the estimated mean. We show that the variance of
the sample mean of outcomes is the product of two important terms. The first one is the
average of correlations across all outcomes and the second one is the variance of the effect
under study, σ2

b . Therefore, as the correlations between outcome increase, the precision of
the estimates decreases because of the first term.

The second term is also important and we resort to the law of total variance to decom-
pose the variance of the effect into two components: σ2

b “ SE2 ` NSE2. Here, SE captures
the contribution of sampling effects and NSE reflects the contribution of methodological
variation. As they both represent a fraction of the same variance, they are directly com-
parable. This allows us to propose a canonical decomposition of the variance of the mean
effect: σ2

µ̂b
“ pSE2 ` NSE2q

ř

p,q ρp,q{P 2.

In an empirical analysis of 33 asset pricing anomalies, we consider eight critical method-
ological choices (e.g., sample period, holding period, long-short quantiles) for a total of
576 research paths. For each anomaly and each path, we estimate the average return of a
long-short portfolio sorted on the corresponding firm characteristic. To compute the cor-
relations among outcomes, we follow two resampling strategies, both involving 500 new
samples: (1) all paths are run on the same new samples (common resampling strategy); and
(2) new samples are drawn separately for each individual path (specific resampling strat-
egy).

We show that the resulting average correlation with common resampling is around
30% whereas it is below 0.25% with specific resampling. From the canonical decomposi-
tion of the variance, we directly see the advantage of resorting to specific resampling is
to shrink the variance more than 100 times. Consequently, the confidence interval for the
mean effect is reduced approximately by a factor of ten. Applying our strategy to the 33
anomalies reveals 29 that can be classified as persistent, with the strongest effects linked
to trend-following and momentum strategies.

The empirical study also provides some insights into the respective contributions of the
SE and NSE to the variance of the (mean) effect. A robust finding of our study is that the
NSE component dwarfs the SE component for most anomalies. Finally, we show that our
methodology can accommodate non-uniform weighting schemes across paths reflecting
preferences and/or theoretical guidance. To this purpose, we consider an alternative and
arbitrary weighting scheme and report a moderate impact on both the confidence intervals
and the relative importance of the SE and NSE components.

Our paper adds to the literature on the validity, robustness, and credibility of empirical
results in finance (Harvey, 2017). A first stream of the literature has focused on the internal
validity of empirical findings. To make causal claims, finance researchers have exploited
natural experiments and other clean identification strategies based on popular techniques
such as difference-in-differences, instrumental variables, and regression discontinuity de-
sign (Heath et al., 2023; Roberts and Whited, 2013). They have also accounted for multiple
hypothesis testing and false discoveries to ensure that statistically significant results are
not merely due to chance, thereby improving the reliability of inferences drawn from em-
pirical analyses (Barras et al., 2010; Harvey et al., 2016; Harvey and Liu, 2020; Chordia
et al., 2020; Chen, 2025).

A second stream of the literature, more closely related to the present paper, has focused

3



on the external validity of empirical findings. In his AFA Presidential Address, Harvey
(2017) emphasizes the value of reanalysis studies in finance, arguing that they strengthen
the field’s scientific foundations and help build credibility (also see Nagel (2019)). Using
the original code and data provided by the authors, Pérignon et al. (2024) independently
verify the empirical results of a sample of finance research papers and report a repro-
ducibility success rate of 52%. Over the past decade, several replication studies have chal-
lenged the robustness of some classic empirical results in corporate finance (Mitton, 2022;
Cohn et al., 2023) and in asset pricing (McLean and Pontiff, 2016; Harvey et al., 2016; Hou
et al., 2020). In contrast, Jensen et al. (2023); Chen and Zimmermann (2022b) successfully
replicated the findings of a large number of market anomalies papers, which aligns with
recent evidence that replication rates in economics have improved (Brodeur et al., 2024).

The multi-design approach serves as a valuable complement to traditional reanalyses.
Instead of relying on subsequent studies, often published years later to reassess the valid-
ity of existing results by, for instance, altering the sample period, data source, estimator,
etc., multi-design studies aim to internalize methodological uncertainty by systematically
spanning a range of protocol choices. We provide in the next section, an exhaustive survey
of the multi-design literature in finance.

2 Multi-design methodologies

2.1 Current methodologies

We list in Table 1 recent studies that leverage multi-design analyses in the field of finance.
These studies span topics such as portfolio strategy performance, market microstructure,
and corporate finance, highlighting the broad applicability of multi-design approaches
throughout the discipline. The table provides the number of methodological decisions
that are considered, as well as the total number of considered paths. We see that the
listed studies employ various tools to summarize the large number of generated results,
including plots of outcome distributions (e.g., box plots) and sensitivity analyses with
respect to specific forks.

Moreover, since the pioneering work of Menkveld et al. (2024), it has become cur-
rent practice to report so-called nonstandard errors. The latter aims to capture the im-
pact of analysts’ ad hoc methodological choices and is measured by taking either the
interquartile range of outcomes or their cross-sectional standard deviation (see NSE col-
umn). Menkveld et al. (2024) and Walter et al. (2024) are the only two studies formally
testing whether nonstandard errors are statistically significant or not. This is done by test-
ing if individual path outcomes differ from the median across all paths. With regard to
the evaluation of SE, all contributions proceed as follows. They run each path, resulting
in time-series of returns for each anomaly. Then, they employ bootstrapping techniques
on these series to generate new average returns. Sampling uncertainty (i.e., the SE) then
follows from the variations of these new returns across bootstrapped samples. In contrast,
we propose in this paper to use resampling before running the paths.
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Study Forks Paths Outcomes Reported results SE NSE

Mitton (2022) 10 1,024 t-stat distributions - -
Beyer and Bauckloh (2024) 11 116,640 alpha, AR, t-stat distributions, sensitivity - IQR

Fieberg et al. (2024) 10 20,736 alpha, AR, SR distributions, sensitivity MSD SD
Menkveld et al. (2024) 7-9 12,384 microstructure (6) distributions, sensitivity, tests - IQR
Soebhag et al. (2024) 11 2,048 SR distributions, sensitivity MSD SD
Walter et al. (2024) 14 69,120 AR, t-stat distributions, sensitivity, tests MSD IQR
Cakici et al. (2025) 9 19,440 alpha, SR, t-stat distributions, sensitivity - -
Chen et al. (2025) 9 1,056 AR distributions, sensitivity MSD SD

Cirulli et al. (2025) 7 9,720 SR distributions, sensitivity MSD SD

Table 1: Multi-design studies in finance. This table display published articles and working papers
in finance that explicitly consider a large number of methodological choices or Forks and a large number of
Paths. Outcomes can be coefficients from regression models, t-statistics (t-stat), confidence intervals (CI), av-
erage returns (AR), Sharpe ratios (SR), or intercepts from factor models (alpha). For the nonstandard errors
(NSE), IQR denotes the interquartile range of outcomes and SD is their standard deviation. Standard errors
(SE) are taken to be the mean of standard deviations of outcomes (MSD), often obtained by bootstrapping
returns of portfolios posterior to spanning the paths. In Reported results, sensitivity refers to analyses that
investigate the impact of decisions and forks, while distributions encompass boxplots, densities, empirical
cumulative distribution functions or particular summary statistics of outcomes. Tests mostly pertain to hy-
potheses on the existence of NSE and on the significance of variations across paths or forks.

2.2 An example in asset pricing

To further motivate and illustrate our study, we review common variations in protocols
in the asset pricing literature. Following Chen and Zimmermann (2022a), we propose a
brief anatomy of choices made in the most influential papers in the field. We focus on
US equities because they are the assets for which data and results are the most abundant.
There are 331 anomalies in the latest version (as of January 2025) of the Open Source Asset
Pricing project. Common decisions concern:3

• Ad-hoc filters: Excluding certain regulated sectors (e.g., banks, real estate invest-
ment trusts, utilities).

• Size filters: Whether or not very small stocks are removed (e.g. bottom 5% or 10%),
or on the absolute price value (e.g. to exclude penny stocks). There is no common
practice and the authors list 17 strategies used in the literature.

• Imputation: Whether missing data handling is performed cross-sectionally (using
the mean or median), or chronologically (using the latest known value), or not per-
formed at all.

• Holding period: How long is the long-short portfolio held before rebalancing. Monthly
(120 instances) and annual periods (110) are by far the most common choices. Other
options include quarterly (7) and biannual rebalancing (3).

• Sample period: The starting month for accounting data is most often taken to be
June (190 instances) or December (54).

3Other possible choices include: leverage (Cirulli et al. (2025)), lookback window (Cirulli et al. (2025),
Walter et al. (2024)), exclusion of sectors (Beyer and Bauckloh (2024), Soebhag et al. (2024), Walter et al.
(2024)) or stocks with insufficient data (Walter et al. (2024)), multiple sorting (Beyer and Bauckloh (2024),
Soebhag et al. (2024), Walter et al. (2024)), industry neutralization (Soebhag et al. (2024)), and alternative
data vendors (Beyer and Bauckloh (2024)).
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• Long-short quantile: The sorting threshold that decides where to go long versus
short. A majority of papers use quintiles (66 instances), deciles (61), but some au-
thors also use quantiles at the 0.30, 0.25, or 0.50 levels.

• Stock weight: The weighting scheme applied to sorted securities. Chen and Zim-
mermann (2022a) list 210 instances of equally-weighting, 32 of value-weighting, and
90 where this information is not disclosed.

This brief overview shows that the few commonly used options in the literature result
in a wide array of possible choices. As an illustration, we see in Figure 1 that eight de-
cisions lead to 576 possible paths. With the exception of two paths (the blue and orange
ones), any other pair of paths will have one, some, or many steps in common.

at 2/3
sample

at 1/3
sample

EW

VW

Financials Size filter Imputation Holding
period

Quantile
threshold

Sample
starts

Sample
ends

Weighting
scheme Outcome

include

exclude

none

yes 1M

3Mno

cut
below

5%

cut
below
10%

at the
start

at the
end

at 1/3
sample

at 2/3
sample

decile

quantile

average
return

Figure 1: Forking paths. This figure displays the eight steps of the protocol along with the
associated 576 paths. The ones in blue and orange follow entirely different steps.

2.3 Notations and definitions

We assume that the empirical part of any research process starts with a given dataset,
which we call D. Any study is then modeled as a sequence of J operations fj that occur
successively. Formally, the reference research output b̂ is given by:

b̂ :“ b̂pDq “ fJ ˝ fJ´1 ˝ ¨ ¨ ¨ ˝ f1pDq. (1)

We assume that b̂ is a real number (e.g., an estimate, a t-statistic, or a p-value), but it may
also be a more complex object, such as a vector (e.g., a confidence interval).

As an illustration, in Figure 1, there are J “ 8 steps and the first one (f1) pertains to
whether or not include financial companies in the analysis, while the second one (f2) filters
out the smallest firms. Henceforth, we assume that each step fj offers rj deterministic
options from which the researcher must choose, denoted by fj,r for r “ 1, . . . , rj , with
rj ě 2. In Figure 1, r1 “ 2 (include or exclude financials) and r2 “ 3 (no screening plus
two thresholds for the size filter). Visually, a path corresponds to a complete trajectory
from left to right.
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As any output is always associated to a given path, we use path indices: b̂p. Each
output b̂p is a random variable that depends on the realization of D as well as on the choice
of path p. This notation allows us to introduce the core concept of the paper, which is the
correlation between the outcomes produced by two alternative paths p and q:

ρp,q “ Cor
´

b̂ppDq, b̂qpDq

¯

. (2)

Empirically, the above correlation is estimated through variations in the dataset D. By
resampling the dataset N times, we obtain N realizations of b̂ppDq and b̂qpDq, allowing us
to compute the sample correlation between the two series. Intuitively, ρp,q measures how
similar two paths are, with greater overlap leading to higher correlation and less overlap
leading to lower correlation.

3 The pernicious effect of correlated outcomes

3.1 Impact on the distribution of the effect

The goal of multi-design protocols is to produce multiple estimates in order to gather
evidence about an effect of interest. A natural approach is to summarize the resulting
estimates using means, medians, box plots, etc. This method relies on the assumption
that the empirical distribution generated from these estimates closely approximates the
true distribution of the effect. To assess whether this assumption holds in practice, it is
necessary to evaluate the distance between the true (unknown) cumulative distribution
function and the one derived from the sampled paths. Notably, Theorem 1 in Azriel and
Schwartzman (2015) provides an upper bound for this distance. It states that if the effects
are assumed to follow a standard multivariate Gaussian law with correlation matrix ΣP “

rρp,qs1ďp,qďP , then:

sup
xPR

E
”

pΦpxq ´ Φb̂,P pxqq2
ı

ď
1

4P
` C}ΣP }1, (3)

where C ą 0 is some constant which can be taken to be equal to C “ 1{2 for simplicity,
and the norm is }ΣP }1 “ P ´2 ř

1ďp,qďP |ρp,q|. The above result simply states that the error
that the analyst makes when confusing the empirical and true cumulative distribution
functions boils down to C times the average of the absolute correlations between paths.
Indeed, this second term is in practice much larger than the first one (1{4P ).

To illustrate this theoretical bound, we simulate P “ 3, 000 outcomes using a multivari-
ate Gaussian distribution and use a Toeplitz matrix to generate a distribution of positive
correlations. The ascending and descending diagonals are equal to γn where n “ 0 on the
diagonal, n “ 1 on the first superdiagonal, etc. We consider two cases:

γ “ 0.996 (low correlation), which corresponds to }ΣP }1 “ 0.1525, (4)
γ “ 0.998 (high correlation), which corresponds to }ΣP }1 “ 0.2776. (5)

As shown in the left panel of Figure 2, we end up with two reasonable distributions dis-
playing a large proportion of small correlations. In the high-correlation case, 64% of the
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correlations are below 0.3 whereas in the low-correlation case, 81% of the correlations are
below 0.3.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
correlation

correlation
high
low

0.00

0.25

0.50

0.75

1.00

−3 −2 −1 0 1 2

distribution
high
low
Gaussian

Figure 2: Simulation exercise. In the left panel, we plot the distributions of correlations in
simulated samples in which the correlation level is set either high (orange) or low (blue). The
simulation is based on Toeplitz matrices with ascending and descending diagonals equal to γn with
n “ 0 being the diagonal and γ “ 0.996 (yielding }ΣP }1 “ 0.1525) and γ “ 0.998 (corresponding
to }ΣP }1 “ 0.2776), with the size of the matrix equal to P “ 3, 000. In the right panel, we plot the
cumulative distribution function of a unique draw of the P variables. The black points mark the
Gaussian density.

In the right panel of Figure 2, we plot the cumulative distribution function of a random
draw of the corresponding multivariate Gaussian law in each sample. The proportion of
observations smaller than zero is equal to 60% in the low-correlation case and 99% in the
high-correlation case. This means that with low correlation, the error is equal to 10% and
with high correlation to 49%. Squaring these errors yields respectively 1% and 24%, both
of which fall below the bounds specified in Equation (3) and displayed in Equations (4)
and (5).

This simple example shows that even with moderate correlations between outcomes,
the distance separating the empirical distribution and the true one can be substantial.
However, an important question remains: how large are the correlations between out-
comes in practice? To start answering this question, we conduct a preliminary analysis
based on four asset pricing anomalies: the market capitalization (size factor), the book-
to-market ratio (value factor), the past 12-to-1 month return (momentum factor), and the
asset growth (investment factor). To conduct our tests, we extract data from Chen and
Zimmermann (2022a)’s website over the 1951-2022 period.

For each sorting variable, we resample the initial dataset by extracting sub-samples
of the original data. Specifically, we randomly select rows of the data (i.e., month-stock
pairs) that correspond to 40% of the initial size, without replacement. Then, for each new
sample, we run all 576 paths depicted in Figure 1. Since we use the same sample for
all the paths, we call this approach the common resampling approach. As we repeat this
process N “ 500 times, we end up for each factor with 500 ˆ 576 “ 288, 000 estimates
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for the average return of the long-minus-short sorted portfolios. For each factor, we then
compute all the correlations ρp,q that populate the matrix ΣP .

Figure 3 displays the distribution of estimated off-diagonal correlations of outcomes
across paths for the four sorting indicators. These distributions indicate that the correla-
tions are substantial, with a pronounced concentration around 0.5. The norms of the cor-
responding correlation matrices, }ΣP }1, are gathered in Panel A of Table 2. We note that
all of these values are substantially higher (0.27-0.37) than those observed in our simula-
tion exercise (0.15-0.28). This highlights the potentially large errors that could occur when
using the empirical distribution of effects (here, the average returns of sorted portfolios)
as a proxy for the true distribution.

momentum size

asset growth book−to−market

0.0 0.4 0.8 0.0 0.4 0.8

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

correlation

Figure 3: Distribution of correlations. We show the distribution of the correlations Corpb̂p, b̂qq

for each of the four sorting variables, coded with colors. Correlations are computed on 500 random
subsamples with a number of rows equal to 40% of that of the original dataset.

3.2 Impact on the variance of the sample mean

We now provide a second illustration of the detrimental impact of large and asymmetric
correlations. We start by showing how this translates into statistical testing for the mean.
To construct confidence intervals for the true mean µb, we must quantify the sample mean
estimator:

µ̂b “
1
P

P
ÿ

p“1
b̂p. (6)

and its variance:

σ2
µ̂b

“ V rµ̂bs “
1

P 2

ÿ

1ďp,qďP

E
”´

b̂p ´ µb

¯ ´

b̂q ´ µb

¯ı

“
σ2

b

P 2

ÿ

p,q

ρp,q. (7)
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Factors

PANEL A: Common resampling Asset growth Book-to-market Momentum Size

}Σ̂P }1 “ P ´2 ř

p,q |ρ̂p,q| 0.3647 0.3652 0.3557 0.2703
P ´2 ř

p,q ρ̂p,q 0.3448 0.3613 0.3430 0.2665

PANEL B: Specific resampling
}Σ̂P }1 “ P ´2 ř

p,q |ρ̂p,q| 0.0377 0.0376 0.0376 0.0377
P ´2 ř

p,q ρ̂p,q 0.0021 0.0024 0.0020 0.0020

Table 2: Sums of correlations. We report the sum of absolute correlations used to compute the
upper bound in Equation (3) and the sum of correlations used to compute the variance in Equation
(7). Both are estimated from N “ 500 samples for each of the four asset pricing anomalies. In Panel
A, paths are run after common resampling (i.e., all paths use the same common dataset). In Panel B,
paths are run after specific resampling (i.e., each path uses a specific dataset).

This leads to two important observations. First, the construction of confidence intervals
for µb requires information on the uncertainty of µ̂b, which is captured by the estimation
of σ2

µ̂b
. As such, the intervals will depend on the correlations between paths, as will be

formally shown in the next section.
Second, the intervals will be tighter and more appealing if these correlations are small

and/or symmetric around zero. In particular, it can be misleading to assume that the
above variance is equal to the sample variance obtained from the paths, σ̂2

b . Indeed, this
would only be true if the sum of non-diagonal correlations was null. However, this is
unlikely to be true in practice, as highly similar paths tend to produce highly correlated
outcomes (see Figure 3). In Panel A of Table 2, we see that the sums of correlations, which
are the rightmost terms in Equations (7), range between 0.26 and 0.37. These high levels
imply large variances for µ̂b.

We will show in Section 4 how specific resampling can mitigate correlation among
outcomes and greatly improve inference.

3.3 The origins of correlations

Where do these positive correlations come from? Part of the answer lies in the common-
ality between paths. Suppose that two researchers make exactly the same methodological
choices, except for outlier management. Arguably, this minor variation would only lead
to a small change in the outcome. Hence, because the paths are very similar, we can ex-
pect that their results will be highly correlated. Reversely, if researchers follow paths that
rarely or never overlap, then the correlation should be much lower.

As this is a testable assumption, we propose to examine it empirically. To do so, we
define dpp, qq as the number of choices that differ between path p and path q.4 In Figure
4, we plot the average correlation between outcomes as a function of the path distance
dpp, qq. By definition, dpp, qq lies between one (for p ‰ q) and the number of steps that

4Formally, dpp, qq “ #tj, rp,j ‰ rq,ju P t0, 1, . . . , Ju, where the operator #tAu measures the size (number
of elements) of set A and rp,j is the option through with path p passes for layer j.
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the researcher can make in the protocol (J). We observe a power decay: as the distance
increases, the average correlation decreases. It is reasonable to expect that, if the number
of steps is arbitrarily large, the correlations between two distant paths would approach
zero.
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Figure 4: Average correlation as a function of path distance. We plot the mean correlation
across all pairs of paths, as a function of the number of different choices between two paths (the
distance between paths).

4 The path-specific resampling strategy

4.1 The basic idea

The above analysis indicates that multi-design studies relying on a single version of a
dataset offer limited guarantees for statistical inference. Indeed, as the numerous analyses
carried out are likely to be highly correlated, we expect significant differences between
the empirical and the true distributions. In this section, we show that specific resampling,
which consists in generating a new dataset before running each path, is a simple and
efficient way to mitigate this problem.

We start by showing that resampling the data before running the paths significantly
alter the distribution of correlations. Figure 5 displays the empirical density obtained
by sub-sampling the data before each new iteration of the protocol. We clearly see that
the correlations are symmetric around zero and highly concentrated within the [-0.1,0.1]
interval. Furthermore, the distributions are very similar across all four characteristics. As
shown in Panel B of Table 2, the norm of the correlation matrix in this case is close to 0.038
for all four factors, which is almost a tenfold reduction, compared to the case when we use
the same dataset for all the paths (see Panel A).

11



momentum size

asset growth book−to−market

−0.2 0.0 0.2 0.4 −0.2 0.0 0.2 0.4

0.0

2.5

5.0

7.5

0.0

2.5

5.0

7.5

correlation

Figure 5: Distribution of correlations after resampling. We show the distribution of the
correlations Corpb̂p, b̂qq for each of the four sorting variables, coded with colors. In this case, the
data is subsampled before running each path and the number of rows corresponds to 40% of the
size of the initial sample. Correlations are computed on 500 random subsamples.

4.2 Inference on the mean

In this section, we lay out ways to carry out inference on paths-generated outcomes. We
are first interested in the empirical mean effect, µ̂b defined in Equation (6), which will
naturally serve as proxy for the true mean. In order to proceed with inference, we must
make some hypotheses on the underlying effect and how it is characterized by paths. We
lay out a first assumption on which we will rely for the remainder of the paper.

Assumption 1. The estimated effect of any path b̂p follows the same law as the true effect, b.
Moreover, this law is (i) unimodal, (ii) symmetric around its mode and mean µb, and (iii) has a
finite variance, σ2

b .

This hypothesis is critical in the sense that if we do not rely on it, then inference based
on path outcomes becomes almost impossible. Henceforth, we seek to build confidence
intervals of the following form:

ICα “ rµ̂b ´ ∆α, µ̂b ` ∆αs, (8)

and for which the probability that the true mean belongs to this interval is at least 1 ´ α,
e.g., with α “ 0.05:

Pr|µb ´ µ̂b| ď ∆αs ě 1 ´ α. (9)

To set the value of ∆α, which defines the width of the interval, we use the following
Bienaymé-Chebyschev inequality, taken from Theorem 6.2 in Ion et al. (2023).5 It states
that, for a unimodal random variable Z symmetric around its mean and with variance σ2

Z ,

5An alternative approach would be to rely on the Central Limit Theorem (CLT). In most cases, variables
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we have:

Pr|Z ´ ErZs| ď vs ě 1 ´

ˆ

2σZ

3v

˙2

(10)

for v ě 2σZ{
?

3. Applied to the sample mean, this yields:

P

„

|µ̂b ´ µb| ď
2σµ̂b

3
?

α

ȷ

ě 1 ´ α, (11)

where 1 ´ α P p0, 1s is the targeted level of confidence and σµ̂b
is the standard deviation of

µ̂b defined in Equation (7). Intuitively, when σµ̂b
decreases, the confidence interval shrinks,

making it more informative. Conversely, as α shrinks to increase the confidence level, the
interval widens.

The only remaining challenge is the calculation of σµ̂b
. The crux of the problem lies in

the fact that we have to estimate the correlations, ρ̂p,q, based on N samples, which gener-
ates some additional uncertainty. We postpone the technical discussion of this particular
point to Appendix A, and we simply formulate that, with at least probability 1 ´ α, the
following upper bound holds for σ2

µ̂b
:

σ2
µ̂b

ď

penalty from
estimation error

2σ2
˚

3
?

αN
`

σ2
˚

P 2

ÿ

p,q

ρ̂p,q,

where σ2
˚ is an upper bound for σ2

b (see Appendix B for a discusion on this bound). Plug-
ging this into Equation (11), we get that the width of the confidence interval:

∆α “
2σ˚

3
?

α

d

2
3
?

αN
`

ÿ

p,q

ρ̂p,q

P 2 . (12)

In Figure 6, we plot the confidence intervals for the four asset pricing anomalies. We
consider three cases. First, we suppose that correlations are evaluated on paths run on
identical samples (common resampling), which corresponds to the distributions shown in
Figure 3. The second case pertains to when new samples are drawn prior to running a
given path (specific resampling), hence the distributions of correlation are those depicted
in Figure 5. The non-diagonal ρ̂p,q (i.e., p ‰ q) are then such that their sum is negligible,
hence the double sum in Equation (12) is equal to 1{P . Finally, in the third case, we still
implement specific resampling but we also assume ex-ante that the distribution is sym-
metric around zero (specific resampling + symmetry). This has two implications: first, the
sum of correlations is equal to zero and second, there is no estimation error anymore (i.e.,

are assumed to be iid, but the CLT also holds under milder assumptions (see, e.g., White (2001)). The most
general conditions under which the CLT holds are summarized in Jirak (2023). These conditions assume a
natural ordering of variables for which is it possible to define the speed at which memory between variables
(e.g., autocorrelation) fades. The problem here is that, in presence of multiple paths, there is no such natural
ordering. Therefore, these conditions do not apply and we cannot resort to the CLT.
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N “ 8). Given Equation (12), the width of the interval reduces to

∆α “
2σ˚

3
?

αP
. (13)

size

book−to−market

asset growth

momentum

0 10 20
annual return (%)

common resampling specific resampling specific resampling & symmetry

Figure 6: Inference on the mean. We plot, for α “ 0.05, the confidence intervals (8) of the mean
of long-short returns in three situations: piq common resampling corresponding to Figure 3 in yel-
low, piiq path-specific resampling with estimation error in red) and piiiq path-specific resampling
without estimation error (N “ 8), in dark. By definition, the sample means lie in the middle of
the intervals. The width of intervals is given by ∆α in Equation (12).

In the derivations, σ˚ is computed as follows. First, for each of the N “ 500 samples,
we compute the standard deviation of effects across paths, which gives 500 estimates for
σ2

b . Next, to be as conservative as possible, we take the maximum of these values. Finally,
we take the upper bound σ2

˚ defined in Equation (29) in Appendix B.
Clearly, the ranges of the intervals in Figure 6 demonstrate the compelling benefits

of path-specific resampling for inference on the mean. The width of the yellow interval
is roughly ten times larger than that of the dark one. The order of magnitude of this
difference was to be expected, given the figures in Table 2. Indeed, a sum of correlations
that is more than 100 times larger is expected to yield, via Equation (12), an interval that is
at least tenfold wider.

4.3 Variance decomposition: standard vs. nonstandard errors

Given our focus on inference, the most critical quantity in this paper is the variance of the
mean effect:

σ2
µ̂b

“
σ2

b

P 2

ÿ

p,q

ρp,q. (14)

Until now, we have focused on the rightmost component of this variance, namely the
correlation coefficients. In this section, we analyze the other important term, σ2

b , the vari-
ance of the effect, and we show how it relates to standard and nonstandard errors.

The standard error of an estimate pertains to uncertainty related to sampling. In the
asset pricing literature, it is often estimated via bootstrapping returns, but, as shown in
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the review by Horowitz (2019), there are many ways to carry this out (e.g., parametric
versus non-parametric methods, with or without blocks, etc.). To estimate the standard
deviation, the contributions listed in Table 1 resample outcomes posterior to spanning the
paths.

Differently, the nonstandard error of a given result refers to dispersion in outcomes
across multiple paths. Two definitions are currently used in the literature: the interquartile
range (Menkveld et al. (2024); Walter et al. (2024)) and the standard deviation (Fieberg et al.
(2024); Soebhag et al. (2024)) of the cross-section of outcomes.

The current approaches have two shortcomings. First, the variety of estimation tech-
niques leads to many different SE (and NSE) estimates, and we lack theoretical guidance
for choosing a specific one. Moreover, the results vary across approaches, as shown in the
right panel of Figure 7. Second, the lack of integration between SE and NSE estimation
prevents these components from summing to the total variance of the mean effect.

In what follows, we propose a new approach to evaluate jointly both the standard and
nonstandard errors. This common estimation framework leads to a single decomposition
of the variance of the mean effect, which complies with the additivity property.

We first recall our notation b̂ppDq for estimated effects, where D represents the dataset
sample and p denotes the path. Naturally, these outcomes exhibit variations, and it is cru-
cial to determine their origin, whether they arise from random fluctuations in the dataset
or from methodological choices. To distinguish the sources of uncertainty, we employ the
law of total variance, which we recall below for two random variables X and Y with finite
variance (Theorem 9.5.4 in Blitzstein and Hwang (2019)):

VrY s “ VrErY |Xss ` ErVrY |Xss. (15)

We seek to decompose the variance of the effect b̂ppDq, and, to this end, we can either
condition according to samples, or to paths. For instance, conditioning with respect to
samples leads to:

σ2
b “ V

”

b̂ppDq

ı

“ V

»

– Erb̂ppDq|Ds

avg effect across paths

fi

fl

variance of avg effect across samples

` E

»

—

—

—

–

Vrb̂ppDq|Ds

variance across paths
NSE reported in literature

fi

ffi

ffi

ffi

fl

average variance across samples.

(16)

In the above expression, we notice that, in the second term, we recover the NSE that cor-
responds to the variance across paths, only, for one given dataset D. What this version of
the law of total variance shows is that this variance should be averaged across several D.
The first term, which corresponds to the variance of averages with respect to each D is, to
the best of our knowledge, never reported in the literature.

An alternative version of the law of total variance can be obtained by conditioning
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with respect to each path p. In this case, we obtain the following sum:

σ2
b “ V

”

b̂ppDq

ı

“ V

»

– Erb̂ppDq|ps

avg effect across samples

fi

fl

variance of avg effect across paths

` E

»

– Vrb̂ppDq|ps

variance across samples

fi

fl

average variance across paths
SE reported in literature

(17)

In this expression, the second term corresponds to the standard errors reported in the lit-
erature featured in Table 1. The first term, however is new. It first computes, for each path,
the average effect across samples, and then evaluates the variance across paths. When
there is a unique dataset, this first term is equal to the NSE measured as the variance of
the outcomes across paths. In Equation (17), paths will contribute to the dispersion of
outcomes via VrErb̂|pss , while sampling matters through ErVrb̂|pss.

The two identities above highlight each dimension individually (paths and sampling),
emphasizing that the SE and NSE reported in the literature are not directly comparable,
as they arise from different variance decompositions. Since both equations (17) and (16)
(i) provide valid decompositions of Vrb̂ppDqs, (ii) are readily computable within our frame-
work, and (iii) have no inherent reason to be preferred over one another, we propose the
following unified definitions for standard and nonstandard errors:

SE “

d

ErVrb̂|pss ` VrErb̂|Dss

2 , (18)

NSE “

d

VrErb̂|pss ` ErVrb̂|Dss

2 . (19)

Crucially, in contrast with the conventions previously used in the literature, these iden-
tities verify:

σ2
b “ SE2 ` NSE2. (20)

This decomposition expresses the total variance of the effects as the sum of two compo-
nents: one arising from from sampling variability, and the other from the variability across
paths. It is reasonable to question how the SE defined in Equation (18) compares to those
commonly reported in the literature (see Table 1). To shed light on this, we conduct the
following analysis.

For the four baseline anomalies, we consider all 576 paths illustrated in Figure 1, gen-
erating return series for each long-short portfolio sorted on the corresponding firm char-
acteristic. As in Soebhag et al. (2024) and Fieberg et al. (2024), we then apply a bootstrap
procedure by resampling the returns (with replacement) to match the original sample size
and computing the average returns for each new sample. We compute for each path the
standard deviation of the bootstrapped averages, and then take the average of these stan-
dard deviations across all paths. The left panel of Figure 7 presents the results of this
procedure, alongside the SE values obtained from Equation (18). We see that (1) the out-
comes are quite consistent across anomalies and that (2) our approach produces SE that
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are approximately half the size of those typically reported in the literature.

asset growth

book−to−market

momentum

size

0.0000 0.0005 0.0010 0.0015 0.0020
standard error

from the literature

proposed here

asset growth

book−to−market

momentum

size

0.003 0.004 0.005
sample−specific nonstandard error

Figure 7: Comparing SE and NSE methods. In the left plot, we report the standard error for
both our method (Equation (18)) and from the bootstrapping method suggested in the literature.
In the right plot, we show the distribution of the NSE as it is computed in the literature (standard
deviation of outcomes across paths for a single dataset), across the N “ 500 samples we originally
generated. In addition, the larger green points mark the NSE calculated as in Equation (19).

Finally, one can also wonder how the NSE defined in (19) compares to the single sam-
ple approach used until now in the literature. In the right panel of Figure 7, we display the
distribution of NSEs evaluated on single datasets, across datasets. While the range is lim-
ited, it still underlines that in this case, the NSE remains subject to uncertainty, and should
be averaged, as shown in the last term of Equation (17). In the right panel, we also feature
the NSE as defined in Equation (19) and it is always smaller than the single-sample values
currently used in the literature. The reason for this is simply that the single-sample compo-
nent (the second one in Equation (19)) is larger than the path-focused component. Hence,
upon averaging, the composite NSE is slightly lower, compared to the single-sample NSE.
The relative importance of SE and NSE in Equation (20) will be further investigated in
Section 5.2 below.

Finally, and most importantly, this analysis of the total variance allows us to simultane-
ously showcase the three components of uncertainty in multi-design studies. By plugging
Equation (20) into Equation (14), we can re-write the variance of the estimator of the mean:

σ2
µ̂b

“
`

SE2 ` NSE2˘

ÿ

p,q

ρp,q

P 2 . (21)

In the favorable case where correlations are approximately symmetric, such that the
last term approaches 1{P (e.g., when resampling is performed independently for each
path), the variance above depends primarily on SE, NSE, and the number of paths P .
As suggested by the previous results, and later confirmed in the more extensive analy-
sis below, the NSE tends to dominate the SE. Consequently, the NSE becomes the main
determinant of the width of the confidence interval of the mean effect.
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5 Uncovering persistent anomalies and NSE at scale

5.1 Resilient anomalies

We now turn to the application of the methods described above to a larger number of
anomalies. We consider 33 factors out of the hundreds reported in the literature. We rely
on the Open Source Asset Pricing dataset of Chen and Zimmermann (2022a), and we only
keep the sorting variables that satisfy the three following criteria:

1. The variable is continuous and not discrete. Indeed, as we use several sorting thresh-
olds in the paths, this is only suited for variables taking arbitrarily large numbers of
values in the cross-section.

2. Data coverage is available for at least 500 stocks starting in 1951. This is because we
cometimes use deciles for sorting, setting a minimum of 500 assets implies long and
short legs of 50 stocks, which is the bare minimum to ensure diversification.

3. Finally, we wish to compare our results with those in the original published papers.
This information is provided here by Chen and Zimmermann (2022a). Hence the
last requirement is that the average return be reported for the sorting variable.

In the end, intersection of these conditions leads to 33 factors. For each of them, we
implement the 576 methodological paths presented in Figure 1. Each path leads to a time-
series of portfolio returns after the final step (weighting scheme) and these returns are
averaged to yield the performance of the factor. We repeat this analysis 500 times for
each path and obtain a total of 288,000 estimated average returns of a long-short portfolio.
We display the distribution of these estimates for each factor in Figure 8, along with the
average return reported in the first academic study introducing this particular factor or
anomaly reported by Chen and Zimmermann (2022a). In Figure 9, we report the confi-
dence intervals defined by (12). We omit the intervals from common resampling because
it is clearly suboptimal (i.e., excessively wide) and would not be used for inference in this
context.

Taken together, the two figures reveal a variety of situations. First, there are cases
in which our results fully corroborate the original publications. This holds true for in-
stance for the Mom6m, IndMom, and BetaTailRisk variables. Indeed, the original average
returns fall in the middle of our intervals and all of them do not overlap with zero. We
also find some rare cases for which our results are more favorable: this occurs when the
original returns are to the left of the red intervals (High52, CBOperProf, OperProfRD, GP).
There are also many occurrences when original results are much to the right of our inter-
vals (McLean and Pontiff (2016)), but the latter are also to the right of zero, meaning that
anomalies are nonetheless confirmed.

We also notice a variety of widths for the confidence intervals. This comes essentially
from the cross-path dispersion of outcomes. Narrow intervals signal that variables can
sustain a lot of methodological changes with limited change in performance. However,
large intervals indicate that factors are more sensitive to implementation choices. Finally,
we also find instances of asset pricing factors that are not found significant upon specific
resampling, i.e., for which the red interval encompasses zero.
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Figure 8: Distribution of effects (average returns). We plot the distribution of average annual
returns (in percents) across all 576 paths, bootstrapped samples, and sampling schemes. The names
of characteristics are those of Chen and Zimmermann (2022a). The blue diamonds and the vertical
points mark the estimates first reported in the literature. The vertical gray line shows the zero
return.
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Figure 9: Resilient anomalies. We plot, for α “ 0.05, the confidence intervals (8) of the mean of
long-short returns in two situations: piq path-specific resampling with estimation error in red) and
piiq path-specific resampling without estimation error (N “ 8), in dark. By definition, the sample
means lie in the middle of the intervals. The width of intervals is given by ∆α in Equation (12).
The blue diamonds locate the average return in the original studies.

5.2 Standard vs. nonstandard errors

We implement the variance decomposition displayed in Equations (18)-(20) for our 33
anomalies. Doing so allows us to contribute to the ongoing debate in the literature on
the importance of variations due to differences in research design across researchers, i.e.,
NSE. In their multi-analyst study in the field of microstructure, Menkveld et al. (2024)
characterize the NSE associated with their six types of estimates as “sizable”. However,
they do not compare them directly to the associated SE. Such direct comparison is made
by Soebhag et al. (2024) in their analysis on the Sharpe ratios of sorted portfolios. They
find that the magnitude of the NSE and SE are more or less comparable: for the ten factors
they consider, they report that the NSE-to-SE ratio lies between 0.5 and 2. Nevertheless,
as we argue in Section 4.3, SE and NSE can be meaningfully compared only when they are
linked to a common reference quantity, which we propose should be the variance of the
effect under investigation.

Our empirical evidence is in line with the findings reported by Menkveld et al. (2024).
We show in Figure 10 that variation in methodologies have a strong impact on the final
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estimate, as shown by the large NSE reported in the figure. We also see that, for most
anomalies, the NSE is at least ten times larger than the SE. In a handful of cases, it even
exceeds 20 times the SE. This finding suggests a more important role for NSE than pre-
viously claimed in the literature (e.g. Soebhag et al. (2024)) and shows the importance of
deriving both SE and NSE in a common framework.6

Our results about the magnitude and relative importance of NSE have important im-
plication in terms of inference for multi-design studies. Indeed, as shown in Section 4.2,
the confidence interval for the empirical mean effect critically depends on its variance, for
which we derived the following equation: σ2

µ̂b
“ pSE2 `NSE2q

ř

p,q ρp,q{P 2. As the SE term
is dwarfed by the NSE term and the final correlation term is small with path-specific re-
sampling (see Table 2), the main driver of the variance is the NSE. As a consequence, we
claim that researchers need to internalize the uncertainty about methodological choices by
default in any protocol whenever it is feasible, that is, not too costly. This is usually the
case in empirical asset pricing.
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Figure 10: Variance decomposition: standard versus nonstandard errors. We display the
decomposition of the variance in average returns proposed in Equations (18)-(20). The names of
characteristics are those of Chen and Zimmermann (2022a).

6 Extension to non-uniform importance of paths

Thus far, we have described an agnostic approach that treats all outcomes as equally im-
portant. However, alternative weighting schemes. One possibility is to assign greater
weight to specific paths, effectively counting them multiple times, if they are more proba-
ble or if they are supported by stronger scientific reasoning.

6As shown in Figure 7, when implementing the methodology used in the literature, we find a NSE-to-SE
ratio between 2 and 3, which is quite in line with the results in Soebhag et al. (2024)).
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In this case, the sample mean estimator is written:

µ̂b “

P
ÿ

p“1
ωpb̂p, with

P
ÿ

p“1
ωp “ 1. (22)

and its variance:
σ2

µ̂b
“ V rµ̂bs “ σ2

b

ÿ

p,q

ωpωqρp,q. (23)

where we recover (6) and (7) by taking ωp “ 1{N . Moreover, the sample standard devia-
tion of effects is:

σ̂2
b “

1
P ´ 1

P
ÿ

p“1
ωppb̂p ´ µ̂bq

2. (24)

To assess the sensitivity of our results to the choice of weighting scheme, we propose
below a non-uniform alternative. We posit a baseline path, which we take to be the blue
one in Figure 1, which we call path number 1 and to which we assign a score of s1 “ 1. All
other paths will have a score of sp “ 0.75dpp,1q, where dpp, 1q is the distance with respect
to the initial path, i.e., the number of choices which differ between path p and path 1.
Because there are eight possible choices (the eight steps in Figure 1), this means that the
maximum distance is equal to eight. In turn, this implies that the minimum score is equal
to smin “ 0.758 « 0.1. Thus, some paths, including the orange one in Figure 1 will have a
score ten times smaller than the baseline path. The weight of each path is then:

ωp “
sp

řP
p“1 sp

. (25)

In Figure 11 below, we reproduce the analysis from Figure 9 but with the weighted
averages and variances defined in Equations (22)-(24) with weights equal to (25). We are
only interested in the situations with path-specific resampling. In this case, because of the
symmetry in correlations, the term in (23) will not move much compared to the baseline
situation, and it is (24) that will drive the changes in variability.

From afar, the confidence intervals are similar to those of Figure 9, with minor differ-
ences. The range of the intervals are roughly unchanged, hence it is mostly on the mean
that the weighting has the most influence. The most important shift is perhaps that of Ind-
Mom, with an interval that is now close to crossing the origin. Nevertheless, the same four
factors are found to be sensitive to methodological changes. This indicates that results
are mildly sensitive to the choice of weights. Yet, the latter should be chosen carefully,
reflecting an informed judgment on the relative representativeness of the paths.

In Figure 12, we also show the effect of weighting on variance decomposition. There
is mostly one notable difference, compared to uniform weights (Figure 10): the ordering
is not exactly the same. For instance the realestate variable ranks fourth in the new plot,
whereas it was second in the original one. Hence weighting does mildly alter standard
errors as well. Nevertheless, standard errors are roughly comparable, to those of Figure
10, highlighting that, in this example, non-uniform weights do not shift the relative im-
portance of standard errors versus nonstandard ones.
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Figure 11: Resilient anomalies with non-uniform weights. We replicate the analysis in
Figure 9 but with non-uniform weights. The baseline path is the blue one in Figure 1 and each path
has a weight proportional to 0.75d, where d is the distance to the baseline path (see Equation (25)).
Averages and variances of outcomes are computed according to Equations (22) and (23).
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Figure 12: Variance decomposition under non-uniform weights. We display the decom-
position of the variance in average returns proposed in Equation (20) but with weights given in
Equation (25). The names of characteristics are those of Chen and Zimmermann (2022a).
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7 Conclusion

Menkveld et al. (2024) is a truly path-breaking paper in finance, not only in the conventional
sense of being highly influential, but also literally as it breaks the path of a single empiri-
cal approach and maps out methodological alternatives. We build on their approach to
derive a rigorous framework for inference on the average effect. Specifically, we derive
a canonical decomposition of the variance of the mean effect. This formula allows us to
clearly identify the drivers of the width of the confidence interval around this mean effect.
We find that three components matter.

The first component is the sum of all correlations across all path outcomes. As this
sum shrinks, so does the range of the confidence interval. The second component is the
standard error (SE), which quantifies the variations of the effect that are due to sampling
noise. Finally, the third component is the nonstandard error (NSE) that results from the
uncertainty generated from methodological choices. Unlike other multi-design studies,
we derive both SE and NSE within a unified framework, enabling a meaningful compari-
son between them.

Empirically, we illustrate these concepts in the context of asset pricing anomalies. Our
results show that keeping the data fixed while spanning the paths is detrimental to accu-
racy because the correlations across paths are strongly skewed to the right. Resorting to
resampling allows to shrink the width of confidence intervals by a factor three. Moreover,
assuming a symmetric distribution of correlation further curtails the range of these inter-
vals threefold. These findings underline how crucial resampling can be in multi-design
studies. In our study, NSE are much larger than their standard counterparts for most
anomalies. Implementing our full methodology allows us to identify 29 persistent factors,
that are robust to multiple methodological variations. For all of them, the 95% confidence
interval for the average return of the long-short portfolio does not include zero.

Overall, we find that the NSE component is the primary determinant of the width
of confidence intervals for multi-path average effects. This highlights the need for re-
searchers to more systematically account for uncertainty stemming from methodological
choices in their scientific protocols. This paper offers a practical, operational framework
to do so. While the improvements we mention are contingent on our dataset, it is likely
that similar gains could be obtained in empirical corporate finance (Mitton, 2022), as well
as in other scientific areas.
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A Inference on the mean

Let us recall Equation (11):

P

„

|µ̂b ´ µb| ď
2σµ̂b

3
?

α

ȷ

ě 1 ´ α,

which relies on σµ̂b
, and this value depends mostly on the information on the correlations

ρp,q. There are two natural estimators for the correlations, ρ̂p,q: the Olkin and Pratt (1958)
estimator7 and the sample correlation, for which there are many estimators of the variance.
Having tested both for N “ 100 and N “ 500, we obtain almost indistinguishable results.

Gnambs (2023) suggests that a reasonable choice for the variance of the estimator is
p1 ´ ρ2

p,qq{
?

N ´ 3, where N is the number of samples that are generated to compute the
correlations. In any case, it is evident that there exists a N˚ such that for N ě N˚, it holds
that

σ2
ρ̂p,q,N ď N´1. (26)

We will henceforth assume that this inequality holds: for N ě 100, simulation studies
(Gnambs (2023)) suggest that the error on the standard error is marginal.

The Bienaymé-Chevbyschev inequality, applied to estimated correlation, then implies,

Pr|ρp,q ´ ρ̂p,q| ď vs ě 1 ´

ˆ

2σρ̂p,q,N

3v

˙2

ě 1 ´
4

9v2N
,

where we have simply used Equation (26) and assumed that the estimator ρ̂p,q is unbi-
ased. Hence, for N large enough, the estimations will be accurate enough. Then, with
probability 1 ´ α at least,

|ρp,q ´ ρ̂p,q| ď
2

3
?

αN
, (27)

and

σ2
µ̂b

ď
σ2

b

P 2

ÿ

p,q

ˆ

ρ̂p,q `
2

3
?

αN

˙

ď σ2
˚

˜

2
3
?

αN
`

ÿ

p,q

ρ̂p,q

P 2

¸

,

where we recall that, by Assumption 1, σ2
˚ is a known upper bound for σ2

b . Plugging this
in Equation (11), we finally have

P

«

|µ̂b ´ µb| ď
2σ˚

3
?

α

d

2
3
?

αN
`

ÿ

p,q

ρ̂p,q

P 2

ff

ě 1 ´ α, (28)

which is the sought interval.

7In this case, ρ̂ “ r̂
´

1 ´ 1´r̂2

N´3

¯

, where r̂ is the sample correlation.
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B Discussion on σ2
˚

The true variance of b, σ2
b is unknown and estimated with σ̂2

b . The latter is computed across
paths, and potentially, across samples too. The issue is that we do not know much about
the properties of σ̂2

b . In particular, we need to quantify its variance in order to be able
to characterize the potential error we are making, compared to σ2

b . Below, we introduce
additional assumptions that allow to obtain a bound on σ2

b with a confidence level of 1´α.
Suppose we have an unbiased estimation σ2

b from P pP ´ 1q{2 paths. Then, via the
Bienaymé-Chebyschev inequality,

P

«

|σ2
b ´ σ̂2

b | ď
2
3

c

Vrσ̂2
b s

α

ff

ě 1 ´ α, α P p0, 1q.

Under Assumption 2 below, we thus have

P

„

|σ2
b ´ σ̂2

b | ď
2σ2

b

3

c

2
αpP ´ 1q

ȷ

ě 1 ´ α, α P p0, 1q.

The bound in the bracket depends on σb, which is unknown, but again considering the
two cases σ2

b ă σ̂2
b and σ2

b ą σ̂2
b , we are able to obtain

P

«

|σ2
b ´ σ̂2

b | ď
1

3
a

αpP ´ 1q{p2σ̂2
b q ´ 1

ff

ě 1 ´ α, α P p0, 1q,

and hence we can set

σ2
˚ “ σ̂2

b

˜

1 `
1

3
a

αpP ´ 1q{p2σ̂2
b q ´ 1

¸

. (29)

Assumption 2. It holds that:

1. the correlations ρp,q are symmetric around zero; in particular, their sum is null;
2.

ř

p‰q Corpb2
p, b2

qq “ 0;

3.
ř

p,q,r Erpb̂p ´ µbqpb̂q ´ µbqpb̂r ´ µbqs “ 0.

The last two points seem reasonable when data is reshuffled prior to each analysis.
For example, we provide in Figure 13 the distribution of the correlation between squared
effects. Interestingly, this distribution can also be fitted with a centered beta law with large
a. We now proceed with a result on the variance of the sample variance.

Lemma 1. Under Assumption 2, the variance of the sample variance is Vrσ̂2
b s “

2σ4
b

P ´1 .

Proof. First, as a side note, let us note that

Vrµ̂bs “ V

«

1
P

P
ÿ

p“1
b̂p

ff

“
1

P 2 E

«

ÿ

p,q

pb̂p ´ b̄q2

ff

“
σ2

b

P 2

ÿ

p,q

ρp,q “
σ2

b

P
,
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Figure 13: Distribution of correlations between squared effects. We show the distribution
of the correlations ρ “ Corpb̂2

p, b̂2
qq for each of the four sorting variables. Correlation are computed

on N “ 500 samples and the samples are generated separately for each path, following our path-
specific approach.

because the sum of correlation collapses (only the variances remain). Next, we have:

σ̂2
b “

1
P ´ 1
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,

and, in addition, it is an unbiased estimator, i.e., Erσ̂2
b s “ σ2

b .8

Moreover, by Assumption 2,
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“ P p3σ4
b ` 6σ2

b µ2
b ` µ4

b ´ pσ2
b ` µ2

bq2q “ P p2σ4
b ` 4σ2

b µ2
bq (31)

8Indeed: Erσ̂2
b s “ 1

P ´1 E

"

řP
p“1 b̂2

p ´ P
´

1
P

řP
q“1 b̂q

¯2
*

“ P
P ´1 pσ2

b ` µ2
b ´ pσ2

b {P ` µ2
bqq “ σ2

b .

32



and

V

»

–

˜

P
ÿ

q“1
b̂q

¸2
fi

fl “ V

«

ÿ

p,q

b̂pb̂q

ff

“ E

»

–

˜

ÿ

p,q

b̂pb̂q

¸2
fi

fl ´

˜

E

«

ÿ

p,q

b̂pb̂q

ff¸2

“ E

«

ÿ

p,q,r,s

b̂pb̂q b̂r b̂s

ff

´

˜

ÿ

p,q

E
”

b̂pb̂q

ı

¸2

“ 3P 2σ4
b ` P 4µ4

b ` 6P 2σ2
b µ2

b ´ pPσ2
b ` P 2µ2

bq2

“ 2P 2pσ4
b ` 2Pσ2

b µ2
bq,

where the third row above comes from a generalization of Isserlis’ theorem to non-central
Gaussian laws.9 Finally, we will need the following expression
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where we have again resorted to a variation of Isserlis’ theorem in the second row.
Now, aggregating everything in a bigger picture and aggregating the pieces:
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9If the effects have zero mean, then Isserlis’ theorem for Erµpµqµrµss and Asssumption 2 imply:
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